skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Silva, Alexandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aldrich, Jonathan; Silva, Alexandra (Ed.)
    Many important security properties can be formulated in terms of flows of tainted data, and improved taint analysis tools to prevent such flows are of critical need. Most existing taint analyses use whole-program static analysis, leading to scalability challenges. Type-based checking is a promising alternative, as it enables modular and incremental checking for fast performance. However, type-based approaches have not been widely adopted in practice, due to challenges with false positives and annotating existing codebases. In this paper, we present a new approach to type-based checking of taint properties that addresses these challenges, based on two key techniques. First, we present a new type-based tainting checker with significantly reduced false positives, via more practical handling of third-party libraries and other language constructs. Second, we present a novel technique to automatically infer tainting type qualifiers for existing code. Our technique supports inference of generic type argument annotations, crucial for tainting properties. We implemented our techniques in a tool TaintTyper and evaluated it on real-world benchmarks. TaintTyper exceeds the recall of a state-of-the-art whole-program taint analyzer, with comparable precision, and 2.93X-22.9X faster checking time. Further, TaintTyper infers annotations comparable to those written by hand, suitable for insertion into source code. TaintTyper is a promising new approach to efficient and practical taint checking. 
    more » « less
    Free, publicly-accessible full text available June 25, 2026
  2. Aldrich, Jonathan; Silva, Alexandra (Ed.)
    We propose an improved abstract interpretation based method for quantifying cache side-channel leakage by addressing two key components of precision loss in existing set-based cache abstractions. Our method targets two key sources of imprecision: (1) imprecision in the abstract transfer function used to update the abstract cache state when interpreting a memory access and (2) imprecision due to the incompleteness of the set-based domain. At the center of our method are two key improvements: (1) the introduction of a new transfer function for updating the abstract cache state which carefully leverages information in the abstract state to prevent the spurious aging of memory blocks and (2) a refinement of the set-based domain based on the finite powerset construction. We show that both the new abstract transformer and the domain refinement enjoy certain enhanced precision properties. We have implemented the method and compared it against the state-of-the-art technique on a suite of benchmark programs implementing both sorting algorithms and cryptographic algorithms. The experimental results show that our method is effective in improving the precision of cache side-channel leakage quantification. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Aldrich, Jonathan; Silva, Alexandra (Ed.)
    Contract systems enable programmers to state specifications and have them enforced at run time. First-order contracts are expressed using ordinary code, while higher-order contracts are expressed using the notation familiar from type systems. Most interface descriptions, though, come with properties that involve not just assertions about single method calls, but entire call chains. Typical contract systems cannot express these specifications concisely. Such specifications demand domain-specific notations. In response, this paper proposes that contract systems abstract over the notation used for stating specifications. It presents an architecture for such a system, some illustrative examples, and an evaluation in terms of common notations from the literature. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Aldrich, Jonathan; Silva, Alexandra (Ed.)
    We present a design and implementation of an in-memory object graph store, dubbed εStore. Our key innovation is a storage model - epsilon store - that equates an object on the heap to a node in a graph store. Thus any object on the heap (without changes) can be a part of one, or multiple, graph stores, and vice versa, any node in a graph store can be accessed like any other object on the heap. Specifically, each node in a graph is an object (i.e., instance of a class), and its properties and its edges are the primitive and reference fields declared in its class, respectively. Necessary classes, which are instantiated to represent nodes, are created dynamically by εStore. εStore uses a subset of the Cypher query language to query the graph store. By design, the result of any query is a table (ResultSet) of references to objects on the heap, which users can manipulate the same way as any other object on the heap in their programs. Moreover, a developer can include (transitively) an arbitrary object to become a part of a graph store. Finally, εStore introduces compile-time rewriting of Cypher queries into imperative code to improve the runtime performance. εStore can be used for a number of tasks including implementing methods for complex in-memory structures, writing complex assertions, or a stripped down version of a graph database that can conveniently be used during testing. We implement εStore in Java and show its application using the aforementioned tasks. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Aldrich, Jonathan; Silva, Alexandra (Ed.)
    Tools such as Alloy enable users to incrementally define, explore, verify, and diagnose specifications for complex systems. A critical component of these tools is a visualizer that lets users graphically explore generated models. As we show, however, a default visualizer that knows nothing about the domain can be unhelpful and can even actively violate presentational and cognitive principles. At the other extreme, full-blown custom visualization requires significant effort as well as knowledge that a tool user might not possess. Custom visualizations can also exhibit bad (even silent) failures. This paper charts a middle ground between the extremes of default and fully-customizable visualization. We capture essential domain information for lightweight diagramming, embodying this in a language. To identify key elements of lightweight diagrams, we ground the language design in both the cognitive science research on diagrams and in a corpus of 58 custom visualizations. We distill from these sources a small set of orthogonal primitives, and use the primitives to guide a diagramming language called Cope-and-Drag (CnD). We evaluate it on sample tasks, three user studies, and performance, and find that short CnD specifications consistently improve model comprehension over the Alloy default. CnD thus defines a new point in the design space of diagramming: a language that is lightweight, effective, and driven by sound principles. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. Silva, Alexandra; Leino, Rustan (Ed.)
    We present a new model-based interpolation procedure for satisfiability modulo theories (SMT). The procedure uses a new mode of interaction with the SMT solver that we call solving modulo a model. This either extends a given partial model into a full model for a set of assertions or returns an explanation (a model interpolant) when no solution exists. This mode of interaction fits well into the model-constructing satisfiability (MCSAT) framework of SMT. We use it to develop an interpolation procedure for any MCSAT-supported theory. In particular, this method leads to an effective interpolation procedure for nonlinear real arithmetic. We evaluate the new procedure by integrating it into a model checker and comparing it with state-of-art model-checking tools for nonlinear arithmetic. 
    more » « less
  7. Silva, Alexandra; Leino, K. Rustan (Ed.)
    Neural Networks (NNs) have increasingly apparent safety implications commensurate with their proliferation in real-world applications: both unanticipated as well as adversarial misclassifications can result in fatal outcomes. As a consequence, techniques of formal verification have been recognized as crucial to the design and deployment of safe NNs. In this paper, we introduce a new approach to formally verify the most commonly considered safety specifications for ReLU NNs -- i.e. polytopic specifications on the input and output of the network. Like some other approaches, ours uses a relaxed convex program to mitigate the combinatorial complexity of the problem. However, unique in our approach is the way we use a convex solver not only as a linear feasibility checker, but also as a means of penalizing the amount of relaxation allowed in solutions. In particular, we encode each ReLU by means of the usual linear constraints, and combine this with a convex objective function that penalizes the discrepancy between the output of each neuron and its relaxation. This convex function is further structured to force the largest relaxations to appear closest to the input layer; this provides the further benefit that the most ``problematic'' neurons are conditioned as early as possible, when conditioning layer by layer. This paradigm can be leveraged to create a verification algorithm that is not only faster in general than competing approaches, but is also able to verify considerably more safety properties; we evaluated PEREGRiNN on a standard MNIST robustness verification suite to substantiate these claims. 
    more » « less